Thirty years of stone handling tradition in Arashiyama macaques: implications for cumulative culture and tool use in non-human primates

Jean-Baptiste Leca¹, Noëlle Gunst¹, and Michael A. Huffman²

¹: University of Lethbridge, Alberta, Canada
²: Kyoto University, Inuyama, Aichi, Japan

Corresponding author: Jean-Baptiste Leca (jbtleca@yahoo.com)

If culture (also termed “tradition” by ethologists) is defined as a population-specific behavioral practice, persistent in several group members across generations or at least over a number of years, and dependent on social means for its transmission and maintenance (Perry and Manson, 2003), then culture is not limited to humans. There is increasing evidence for cultural variations in a wide range of behavioral patterns (e.g. interspecific interactions, communicatory, courtship, display, grooming, object play and social play behaviors, feeding habits, food processing techniques, medicinal plant use and tool use) and across various animal taxa (including fish, birds, rodents, cetaceans, and non-human primates) (for reviews, see Lefebvre and Palameta, 1988; Avital and Jablonka, 2000; Fragaszy and Perry, 2003).

However, some authors argue that “animal traditions” and “human culture” should be distinguished and considered analogs rather than homologs on the basis of several major differences: 1) the content of what is transmitted (simple versus elaborate behavioral patterns), 2) the social learning mechanisms that support them (local enhancement and social facilitation versus imitation and teaching), 3) the stability and durability of the phenomenon (ephemeral animal tradition drifts or fads lasting from only a portion of an individual’s life span up to a few generations versus stable human cultural traits enduring across centuries), and 4) the cumulativity of the process (no obvious improvement of behavioral patterns showing little if any change over generations versus progressive accumulation of cultural modifications over time leading to increasingly complex behaviors) (Galef, 1992; Tomasello et al., 1993; Enquist and Ghirlanda, 2007; Caldwell and Millen, 2009; Hill, 2009).

Cumulative cultural evolution refers to situations in which “the achievements of one pattern of behavior form the basis for the selection of a modified and better-adapted descendant pattern” (Avital and Jablonka, 2000, p. 94). This process involves a “ratchet-like effect” where a beneficial modification is retained until it can be improved upon, and results...
in behaviors or artefacts with cultural histories, i.e. that no individual could invent on their own (Tomasello, 1990; Tomasello et al., 1993). On the one hand, human societies typically exhibit elaborate cumulative cultural evolution, with new patterns and methods building upon their predecessors, often leading to increasing diversity, complexity, and efficiency of cultural or technological products (Tomasello, 1990; Boyd and Richerson, 1996; Caldwell and Millen, 2008a,b, 2010). These accumulated adaptive knowledge and artefacts have allowed our species to occupy and exploit a far wider range of habitats than any other animal (Boyd and Richerson, 1996).

On the other hand, current evidence for cumulative culture and ratcheting in non-human species remains rare and controversial (Galef, 1992; Boesch and Tomasello, 1998; Tomasello, 1999; Laland and Hoppitt, 2003; Tennie et al., 2009). There are only a few well-documented cases in which cultural changes seem to accumulate over generations, leading to the evolution of behavioral patterns that no single individual could invent. In New Caledonian crows, tool manufacture skills may partly be acquired through cumulative cultural evolution (Hunt and Gray, 2003). In killer whales, the foraging techniques consisting of briefly beaching in order to prey on sea-lion pups appear more diverse and complex across generations (Guinet and Bouvier, 1995). Some forms of ant fishing and nut cracking behaviors currently performed by particular chimpanzee communities indicate a step-by-step elaboration on earlier and simpler variants that may reflect accumulated modifications of socially transmitted behavioral patterns (Whiten et al., 2003).

Finally, since Japanese researchers started providing food for the Japanese macaques living on Koshima island, this troop has gradually acquired a whole new lifestyle (Avital and Jablonka, 2000). Feeding the monkeys first with sweet potatoes, then with wheat grains, on the sandy seashore of Odomari beach, directly led to the appearance of two successive food-washing traditions: 1) potato-washing, with an original form described as dipping the potatoes
into the freshwater of a nearby stream, thus washing off sand and dirt before eating them, and
a subsequent elaboration of this behavior consisting of biting the potatoes before dipping them
into the shallow salty seawater, not only to wash them, but also presumably to season them
before they were consumed, and 2) wheat-washing defined as picking up a handful of mixed
sand and wheat and throwing it into the seawater, which resulted in separating the heavier
sand that sank from the lighter wheat that floated on the surface, allowing the monkeys to
collect it easily (Kawai, 1965; Itani and Nishimura, 1973; Kawai et al., 1992; Watanabe,
1994).

Moreover, the habit of spending more and more time on the beach, an unnatural
habitat for Japanese macaques, also had ulterior indirect effects on the diffusion of additional
behavioral innovations, through the influence of food provisioning on the troop’s activity
budget and sedentary lifestyle (cf. Huffman and Hirata, 2003; Leca et al., 2008a). As young
monkeys brought to the beach by their mothers (who had learned washing their food) became
accustomed to the salty water, they started playing in it. Thus, sea-related subsistence
traditions triggered the social traditions of using the sea for swimming, jumping and diving, as
well as cooling in summer, newly acquired behaviors that became characteristic of the whole
troop, including the adults, and had not been reported before in this troop or in other troops of
Japanese macaques (Kawai, 1965; Kawai et al., 1992; Watanabe, 1994). Another
consequence of these beach activities occurred later: the monkeys started to eat raw fish, a
feeding habit that is still present in the troop today (Watanabe, 1989; Leca et al., 2007a). In
sum, Koshima macaques have accumulated and elaborated over decades their food-related
and social traditions in a ratcheted way by developing a new lifestyle associate with a new
habitat, the sandy beach and the sea (Kawai et al., 1992, Watanabe, 1994; Avital and Jablonka,
2000).
However, these few cases of cumulative cultural evolution in animals are still considered speculative and contentious. Some authors argue that cognitive constraints and contrasting social learning abilities make the evolutionary improvement of behaviors by the gradual accumulation of cultural adaptations much more likely in humans than in other animals (Galef, 1992; Heyes, 1993; Tomasello, 1999). As pointed out by Boyd and Richerson (1996), while social learning and culture is common in nature, cumulative cultural evolution is strikingly rare. Therefore, the pervasive human ability to accumulate socially learned behaviors over many generations poses an evolutionary puzzle: if cumulative culture is such an effective means of adaptation, why non-human cultures do not ratchet to any substantial degree? Lack of evidence for such a process does not mean its absence in nature (Danchin and Wagner, 2008). In order to tackle this issue, more “provocative and intriguing instances of animal cumulative culture” based on systematic and long-term research are needed (Sapolsky, 2006). This report aims to show how the longitudinal study over 30 years (1979-2009) of one of the most thoroughly documented behavioral traditions in non-human primates, namely stone handling by the Japanese macaques living at Arashiyama, Japan, can contribute to the understanding of cumulative culture in animals, through the gradual transformation of stone-directed behavioral patterns that could be regarded as tool-use precursors.

Stone handling as a behavior: structural and functional aspects

Stone handling (SH, hereafter) activity is typically defined as the spontaneous, solitary, non-instrumental and seemingly playful manipulation of stones, through the performance of multiple behavioral variants, also called SH patterns, with one or both hands, and occasionally in combination with the feet and mouth (Huffman, 1984; Leca et al., 2010a, in press). SH is typically categorized as a form of solitary object play, and differs both structurally and functionally from object exploration (Huffman and Quiatt, 1986; see also Candland et al.,
An individual engaged in SH activity can perform, for several minutes, a series of different SH patterns, often repeated and varied in sequence, while showing a relaxed facial expression and focusing most of its attention on the stones being manipulated (Huffman, 1984; Leca et al., 2007b).

Like in other types of object play (cf. Fagen, 1981), some SH patterns are similar in form to those used during foraging activity, but the behaviors are performed out of context and modified in structure (Leca et al., 2007c, 2008a, in press). SH occurrence and frequency is largely dependent upon the time available for non-subsistence activities (Huffman and Hirata, 2003; Leca et al., 2008a). SH is mainly practiced by young individuals but is also continued into adulthood. In macaques, SH is probably the only example of routine object play among adults (Huffman and Hirata, 2003; Leca et al., 2007b). Age appears to affect the diversity and type of SH patterns displayed. As they grew older, individuals tend to perform less varied and more simple patterns, such as gather, scatter, or pick up stones (Huffman and Quiatt, 1986; Leca et al., 2007b; Nahallage and Huffman, 2007a).

Although SH is primarily a solitary activity, the social aspects involved in the occurrence of this behavior should not be overlooked. First, there is no doubt that it is socially transmitted (Huffman, 1984; Nahallage and Huffman, 2007b; Leca et al., 2010b). Second, an inter-group comparative study showed that troop size was correlated with the proportion of troop members exhibiting SH simultaneously. The effect of troop size on the synchronized performance of SH may reveal the contagious nature of play (Leca et al., 2007b). Third SH is occasionally integrated with social interactions such as play wrestling and allogrooming (Huffman, 1984; Leca et al., 2008a; Figure 1). Fourth, once particular stones are involved in a solitary SH episode, they appear to trigger great interest from other individuals who sometimes try to snatch them away from the handler as if they were the only stones available,
and such supplanting interactions over the stones suggest the existence of a rudimentary form of ‘possession’ in monkeys (Huffman and Quiatt, 1986; Leca et al., 2010b).

Regarding functional aspects, SH is largely considered a non-directly adaptive behavior (Huffman, 1984; Huffman and Quiatt, 1986; Leca et al., in press). Most of the 45 SH patterns listed in the Japanese macaque repertoire do not seem to serve any immediate function (Leca et al., 2007c; Nahallage and Huffman, 2007a). Despite the rare occurrence of percussive and complex SH patterns combining two stones, stones and substrates or objects, and stones and body parts (e.g., flint, pound on surface, and put/rub on fur, cf. Table 1), and with the notable exception of unaimed stone-throwing, a SH pattern that may serve to augment the effect of agonistic displays in a captive troop housed at the Kyoto University Primate Research Institute (Leca et al., 2008b), the stones handled are never used as tools to achieve an overt goal. Even complex combinatorial SH patterns did not meet the descriptive criteria of Beck’s (1980) definition of tool use. The combination of stones with other objects, including food items, did not “efficiently alter the form, position, or condition” (Beck, 1980, p. 10) of these objects (Leca et al., in press). Therefore, there is no local survival advantage in performing a particular SH pattern rather than another.

However, two proximate explanations for the performance of SH have been suggested. First, we believe that all monkeys, regardless of age, may simply enjoy manipulating stones, and pleasurable feedback potentially gained from the activity may be an immediate reinforcement (Huffman, 1996; Leca et al., 2007c; Nahallage and Huffman, 2007a). Second, and at least in troops provisioned with cereal grains several times a day, like at Arashiyama, handling stones may be an extension of foraging-like behaviors, a continuation of manipulatory actions directed at alternative objects, while chewing food that does not require further food-processing behaviors (Huffman and Hirata, 2003; Leca et al., 2008a).
Japanese macaques are known for their cultural behaviors, among which is SH. The behavior meets the set of criteria typically used to define a tradition. First a systematic comparative survey of SH in multiple populations of Japanese macaques revealed substantial inter-group variation in the frequency and form of the behavior, with a minor role of genetic determinants and environmental factors in explaining such differences (Leca et al., 2007c, 2008c). Instead, the geographic distribution of clear troop-dependent clusters of SH variants was suggestive of the notion of cultural zones, based on inter-troop observation and possibly males transferring SH patterns when migrating from one troop to another (Leca et al., 2007c).

Second, longitudinal and experimental studies provided sound evidence for the role of social factors in the acquisition of the behavior and the maintenance of the tradition, which may involve not only direct social influences through the observation by naïve infants of their mothers as SH demonstrators, but also indirect social inputs through the stimulating effect of SH artefacts, such as piles of stones left on the ground by previous stone handlers (Nahallage and Huffman, 2007b; Leca et al., 2010b). Moreover, the pathways of intra-group diffusion of SH were in accordance with affiliated networks: the behavior spread among social partners, along matrilineages, or within same-age classes (Huffman, 1984; Leca et al., 2007b, 2008b).

Third, transmitted over generations, SH behavior persists over decades within several groups of Japanese macaques, where it occurs on a regular basis (Leca et al., 2007c, 2010b).

What makes the Arashiyama troop “special” for the study of the SH tradition?

When SH behavior is mentioned in the primate culture literature, it is often associated with one particular location in Japan: Arashiyama, Kyoto Prefecture (e.g. Thierry, 1994, p. 98; de Waal, 2001, p. 230). However, it is not the place where SH was first noticed or
reported. The very first observation of SH in Japanese macaques might have occurred around 1966 at Funakoshiyama, Hyogo Pref. (cf. I. Narahara cited in Huffman and Hirata, 2003), and the first published study on SH was conducted at Takagoyama, Chiba Pref. (Hiraiwa, 1975). Moreover, Arashiyama is only one of the ten sites across the Japanese archipelago where SH behavior has been observed, reported to occur, or studied (Huffman and Hirata, 2003; Huffman et al., in press; Leca et al., 2007c).

There are two reasons to account for the association between SH and Arashiyama in the public and scholars’ minds. First, the initial research article written in English and providing original detailed descriptions about the conditions of appearance and initial diffusion of SH behavior within a group of Japanese macaques was drawn from observations done at Arashiyama (cf. Huffman, 1984). Second, Arashiyama is the only study site where the prevalence of SH behavior among individually identified group members and the diversity of SH patterns have been documented at several points in time for three decades (Figure 2, Table 2). As Perry (2006) pointed out, cultural primatology is a relatively new discipline and long-term databases that could bring a historical perspective on cultural modifications within the same populations and across multiple generations are lacking (but see Kawai et al., 1992; Perry et al., 2003; Nishida et al., 2009; this study for notable exceptions). In sum, Arashiyama is the first field site where a combination of longitudinal, comparative, and experimental approaches has provided sound evidence for the long-term maintenance, inter-troop variability, and social transmission of a single cultural behavior in Japanese macaques (reviewed in Huffman et al., in press).

For the present report, we conducted long-term analyses (1979-2009) on the free-ranging provisioned troop of Japanese macaques living at the Iwatayama Monkey Park, Arashiyama, Kyoto Prefecture. In 1986, a troop fission occurred at Arashiyama, splitting the original B troop into two sister troops named E and F; from then, only E troop stayed around
the provisioning area and could be surveyed (cf. Huffman, 1991). According to the survey period, the group comprised between 132 and 243 members, of all age and sex classes, and the vast majority of them were sampled for SH behavior (Table 2). Individual identities, exact age, and kin relations through maternal lineages were known. The study subjects could be approached and observed within 3-5 m. Throughout the entire study, data on SH were collected by using continuous video-recorded focal-animal sampling, occasionally supplemented with instantaneous group activity scan sampling, as well as video-recorded and pen-and-paper *ad libitum* sampling (Altmann, 1974).

Early history of the SH tradition at Arashiyama: innovation and diffusion

Describing and explaining the origins of SH at Arashiyama

Although the Arashiyama troop had been studied since 1954, and despite long-term and intensive research conducted at the site by many scientists successively (cf. Huffman, 1991), SH had never been observed until December 7, 1979, when a 3-year old middle-ranking female, called Glance-64-76, started to exhibit the behavior (Figure 1; cf. Huffman, 1984). After bringing several flat stones from the forest to the open area of the provisioning site, she repeatedly gathered them into a small pile in front of herself and then scattered them about on the ground with the palms of her hands. When another monkey approached, she picked up a few stones, carried them to a nearby place, and resumed SH (Huffman, 1996). This was the only SH episode observed by MAH during the 14-month survey lasting from August 1979 to September 1980.

Like in most innovations, defined as the discovery of novel information, the emergence of new behavioral patterns, or the performance of existing behaviors in a novel context (reviewed in Kummer and Goodall, 1985; Reader and Laland, 2003), we can only speculate about the factors that may have favored the appearance of SH at Arashiyama,
including the environmental context, the structural and functional aspects of the behavior, and
the individual characteristics of the innovator. First, food provisioning has undoubtedly
affected the animals’ activity budget, relaxed selective pressures on foraging, and created
favorable environmental conditions under which various behavioral innovations by Japanese
macaques may occur (Huffman and Hirata, 2003; Leca et al. 2007c, 2008a, 2010c). More
specifically, attracting monkeys to the open space of feeding areas, where many stones occur,
increases considerably their opportunities to encounter these objects. Feeding monkeys also
gives them “free” time since they can devote less time to foraging compared to their wild
counterparts.

These proximate explanations are in agreement with the gradual disappearance of SH
at Takagoyama after provisioning was stopped (Fujita, personal communication, cited in
Huffman, 1984), and with the lack of observations of SH in wild, non-provisioned troops of
Japanese macaques at other sites (e.g. Kinkazan: Shimooka, personal communication;
Yakushima: Hanya, personal communication). In non-provisioned troops, foraging
interspersed with traveling between food patches accounts for a large proportion of the daily
activity budget (Hanya, 2004), and there may simply be less time available for non-
subsistence activities such as SH (Huffman and Hirata, 2003; Leca et al., 2008a). Therefore,
food provisioning is likely to enhance the chances for SH to emerge. Although at Arashiyama
(and other field sites too), there is now a strong temporal relationship between SH and feeding
activities, with most SH episodes occurring within 20 minutes after food was distributed, it
should be noted that the SH tradition emerged several decades after the onset of provisioning
in these troops (Huffman and Hirata, 2003; Leca et al., 2008a). The reasons for the late
appearance of SH are not fully understood. Possibly, sporadic SH appeared earlier without
spreading within the troop, and without being noticed by human observers (Huffman, 1984).
Second, the general behavioral predispositions of a species make behavioral innovation relatively predictable (Huffman and Hirata, 2003). Considering the natural propensity for Japanese macaques to manipulate stones (cf. Leca et al., 2007c), and provided equivalent stone availability (cf. Leca et al., 2008c), SH traditions are theoretically equally likely to emerge in all provisioned troops, although relative rate of exposure to stones does not influence the latency of infants to acquire SH (Nahallage and Huffman, 2007b). Because chance may account for a good number of behavioral innovations (Reader and Laland, 2003), and SH is essentially a playful activity, we suggest that the SH innovation is an accidental by-product of object playing. Finally, individual characteristics of the SH innovator may partly account for the appearance of the novel behavior. The fact that the first individual observed to perform SH at Arashiyama was a juvenile emphasizes the playful nature of this behavior (Huffman, 1984). Glance-64-76 might have temperamental traits that made her prone to behavioral innovation. This is consistent with previous research showing that most Japanese macaque innovators are juvenile females (Kawai, 1965; Itani and Nishimura, 1973; Kawai et al., 1992; Leca et al., 2010c).

Analyzing the diffusion of SH at Arashiyama

During the time elapsed between the first two surveys (October 1980-October 1983), SH behavior has spread to almost half of the Arashiyama troop and has become a daily occurrence (Table 2). Despite this three-year gap in observation, a detailed analysis of the 1984 distribution of identified stone handlers according to age/sex classes and matrilineal membership allowed MAH to reconstruct, at least partially and a posteriori, the initial pathway of diffusion of SH within the troop (Figure 2; Huffman, 1984). In order to facilitate the comparison with other behavioral traditions, Huffman and Quiatt (1986) proposed that the diffusion of innovative behaviors could be chronologically divided into two distinct stages,
namely the “transmission phase” and the “tradition phase” (after Itani, 1958; Kawamura, 1959; Kawai, 1965).

Transmission phase. This early period of behavioral diffusion is typically similar across groups and presumably species. The first individual(s) to display a novel behavior may do so repeatedly and persistently, which facilitates its initial transmission to a network of close spatial-interactional associates of the innovator (Huffman and Quiatt, 1986; Nishida et al., 2009; Leca et al., 2010c). According to Coussi-Korbel and Fragaszy (1995), the spatial proximity and behavioral coordination exhibited by tolerant partners are expected to enhance opportunities for social learning, and therefore, the rate and speed of behavioral diffusion should be high within these subgroups.

Previous studies of subsistence traditions involving the diffusion of food-related innovations in Japanese macaques showed that most of these behaviors initially spread among young individuals, immediately followed by the upwardly vertical transmission to older kin members and to other adults regardless of kinship (Kawai, 1965; Itani and Nishimura, 1973; Kawai et al., 1992; but see the special case of fish eating in Watanabe, 1989 and Leca et al., 2007a). In contrast, it appeared that the transmission phase of SH behavior occurred exclusively horizontally and among a particular cohort of young individuals, mainly peer playmates, starting with the innovator’s cousins (Huffman, 1984). After a few years, as the first stone handlers grew older and their social networks extended, new and younger siblings and peers became stone handlers. Unlike food-washing behaviors, as no individuals over five years old were seen to perform SH behavior during the transmission phase, there would be a critical period after which SH cannot be acquired (Huffman, 1984).

Most feeding and food washing innovations found in Japanese macaques showed a wide and rapid intra-group diffusion – it took less than four years for most of these novel
behaviors to be transmitted to at least a second group member – probably because information about food is critical to every individual (Itani, 1958; Kawai, 1965; Azuma, 1968; Itani and Nishimura, 1973; Watanabe, 1989; Kawai et al., 1992; Nakamichi et al., 1998). Likewise, the playful nature of SH behavior could account for its fast transmission within the Arashiyama troop (Huffman, 1996; Leca et al., 2007b). Seeing group members playing is a reliable cue for more individuals that the current environmental conditions are safe enough to engage in play (Spinka et al., 2001). Although SH is primarily a solitary activity, the sight of nearby stone handlers and even the loud noise generated by percussive patterns may increase an individual’s probability to start handling stones (Leca et al., 2007b). This stimulation effect may be amplified by an increasing number of troop members and eventually result in a form of “hysterical contagion” (Kerckhoff, 2002). This may help to explain the increase in number of SH individuals (synchronized occurrence) around feeding time at Arashiyama, as this is the only time when most troop members are all together in the same location (Leca et al., 2008a). The rapid transmission of SH at this site may also have been enhanced by local construction projects when a large number of stones were left at the edge of the feeding area (Huffman and Hirata, 2003).

Tradition phase. In this later period of diffusion, the behavior is passed down along multigenerational lines. At Arashiyama, when the first female stone handlers reached reproductive maturity, SH was mainly acquired vertically from mothers to offspring via observational learning (Huffman, 1984, 1996; see also Nahallage and Huffman, 2007b). During the tradition phase, the rate of SH diffusion was approximately equal to the birth rate: an infant primarily learnt SH from its mother, and complementarily from an infant playmate whose mother handles stones, or from an older sib who had learned SH from a playmate (Huffman, 1996). However, it should be noted that the mother is the primary source of an
infant’s early exposure to SH (Huffman, 1984, 1996; see also Nahallage and Huffman, 2007b).

From 1985 all infant macaques living at Arashiyama acquired SH behavior within their first 6 months of life and thus, the increase in the number of new stone handlers was purely a function of new births (Huffman and Quiatt, 1986).

Since 1979, SH has spread gradually within the Arashiyama troop and across multiple generations of all matrilineages. Cross-sectional and longitudinal analyses on a 30 year-time scale allowed us to assess the rate, speed and pathways of diffusion of this behavior (Figure 2; Table 2; see also Huffman, 1996; Huffman and Hirata, 2003). In June 1984, 48.7% of the troop exhibited SH, and by February 1985, an additional 27 individuals (i.e. 60.2% of the troop) born before June 1984 were added to the list. In 1991, 12 years after the appearance of SH at Arashiyama, the diffusion rate increased to 81.3%, and every member of F troop under the age of 10 was verified to have acquired SH (Huffman, 1996; Fig. 2). Finally, during more recent surveys in 2004 and 2008, the percentages of stone handlers in the troop were 92.9% and 93.2%, respectively. In 2008, only nine individuals (eight females and one male) out of 132 troop members were qualified as verified non-stone handlers, i.e. they were sufficiently sampled but were not observed performing SH. They were all 25 years and older. Among them, the five youngest individuals (25-28 years old) were recorded as stone handlers in the 1991 or 2004 survey but had stopped engaging in this behavior since then, whereas the four oldest individuals (28 years and older) had never acquired SH. At Arashiyama, as well as several other study sites, SH frequency was significantly lower in old adults than in younger troop members (Nahallage and Huffman, 2007a; Leca et al., 2007b).

During the tradition phase, as long as mothers continue to practice SH, and provided the initial environmental conditions (in terms of food provisioning and stone availability) prevail, this behavior will persist in young individuals and will thus become established in the troop across generations (Huffman and Hirata, 2003). However, the case of Takagoyama –
where the SH tradition gradually disappeared after food provisioning was stopped and the
monkeys began to feed solely on natural vegetation (Fujita, personal communication, cited in
Huffman, 1984) – suggests that the persistence of the cultural practice of SH may be
contingent on diet and foraging circumstances (Leca et al., 2008a).

Cumulative transformation of the SH tradition

With a 30-year history, the SH tradition at Arashiyama has now reached its
“transformation phase”, defined as the late period in which long-enduring practice with the
behavior and acquired familiarity with the properties of the stones are gained through the
integration of SH with other daily activities by many age and sex classes (cf. Huffman and
Quiatt, 1986; Huffman and Hirata, 2003). In 2004, we conducted a comparative survey of SH
among multiple troops of Japanese macaques. We found that the Arashiyama troop presented
a unique profile in terms of frequencies of SH patterns, i.e. its own SH tradition (Leca et al.,
2007c). However, a longitudinal study of SH in this troop showed that the emergence of this
tradition was not an overnight process. By using similar methods of data collection for three
decades of continued observation at Arashiyama, we found that the monkeys have gradually
increased the size and the complexity of their SH repertoire and largely diversified the
contexts in which SH activity was practiced compared to earlier generations of stone handlers
(Leca et al., 2007c, 2008a).

Gradual increase in the size and complexity of the SH repertoire

The first aspect of the transformation of the SH tradition is an increase in the size and
complexity of the SH repertoire over a number of years, that is an accumulation across
generations of stone-related behavioral diversity and sophistication (Figure 3). In 1980, the
SH innovator, Glance-64-76, displayed only four SH patterns, namely gather, pick up, scatter,
and carry. In 1984, eight basic SH patterns were reported in the Arashiyama troop, including the original ones: gather, pick up, scatter, carry, cuddle, roll in hands, rub stones together, and clack (Huffman, 1984). In 1991, an additional nine SH patterns were recognized – making a total of 17 patterns in the SH repertoire of the troop – with six of those patterns being obvious variations of the previous eight (pick up and drop, pick up small stones, rub on surface, rub with hands, flint, and grasp with hands). The three new variants were toss walk, move and push, and grasp walk, behavioral patterns considered to reflect an increasing familiarity with stones in general and their integration with locomotion activity, as the practice of SH spread and became a substantial part of the individual and the troop’s daily activities (Huffman, 1996).

Between 1991 and 2004, the size of the SH repertoire almost doubled. During the 2004 survey, a total of 32 SH patterns were observed in the Arashiyama troop (Leca et al., 2007c). The late emergence of SH patterns not recorded before involved percussive and complex manipulative actions, such as pound on surface, combine with object, rub/put on fur, and wash revealed an increased diversity in the combination of stones with other objects or substrates (Leca et al., 2008a). Finally, in 2008, two new SH patterns were recorded – i.e. 34 patterns in the group SH repertoire – grind with teeth and rub in mouth, that could be considered variations of patterns already observed in 2004, such as bite, put in mouth, and move inside mouth (Figure 2; Table 2).

As the duration of the Arashiyama troop’s experience with SH increases, so does the variety of patterns displayed, possibly as a product of an increase in the number of “individual contributions” to the troop’s behavioral repertoire which gradually diffuses within the group (Huffman et al., 2008). Another explanation for this increase in SH diversity and complexity could be that the young individuals growing up with SH about two decades ago are now at an advanced age, and they carry on with more elaborate patterns than they showed when they
were young, compared to the earliest generation of stone handlers. This is reminiscent of the accumulation of several behavioral variants of food washing (e.g. seasoning, rinsing, rubbing between hands, brushing, throwing, etc.) across generations in the troop of Japanese macaques living at Koshima (Watanabe, 1994). Changes in the frequency of cultural behavioral patterns over time and at the group level may be referred to as a “faddish shift in the practice of certain behavioral sub-types” (Huffman and Quiatt, 1986, p. 413). In the case of SH, numerous behavioral patterns are accumulated modifications of earlier forms. For example, the recently appeared flint and swipe patterns can be considered slight variations of the original form clack (Leca et al., 2007c). Despite such accumulation, it should be noted that all the original variants were also maintained in the Arashiyama troop over 30 years of continued observation at this site.

Diversification of the contexts of SH practice

The second aspect of the transformation of the SH tradition is the expansion of the contexts in which SH is practiced, also referred to as “mixed-activity SH”. Recently, SH was found to be integrated with social play or grooming interactions (Figure 1: j-k) and during inter-mount intervals taking place within the context of heterosexual and homosexual consortships (Leca, pers. obs.). In free-ranging troops where food provisioning plays a central role in the activity budget (e.g. at Arashiyama), our long-term study also revealed the integration of SH with food-related activities and the gradual emergence of food-directed SH patterns (e.g. rubbing stones and peanuts together on the ground). From 1985 to 1991, a few instances of expansion of SH practice to feeding context were reported at Arashiyama. For example, during the winter 1985, there were two incidents of monkeys rubbing a stone on food items such as an acorn and a sweet potato (Huffman and Quiatt, 1986). However, these observations were too anecdotal to refer to them as a new SH pattern (Huffman, 1996).
By contrast, in the 2004 survey, various behavioral patterns combining provisioned and natural food items with stones (e.g. scattering stones mixed with chestnut shells on the ground, rolling a stone and pieces of peanut shell in one’s hands, and the SH pattern called *combine with object*) were more frequently observed (mean = 1.3 bouts/hour of SH activity; cf. Leca et al., 2008a). Moreover, the recent appearance of SH variants combining the use of hands and mouth (*put in mouth, carry in mouth, move inside mouth, bite, lick, flint in mouth, and rub in mouth*) suggested that SH had become more integrated with foraging and feeding activities.

The intergroup comparative study showed that the integration of SH with food-related activities and the emergence of food-directed SH patterns were more frequent in free-ranging troops where food provisioning strongly influenced the activity budget (Leca et al., 2008a). In troops frequently provisioned, the daily performance of SH was highly contingent on food provisioning: SH mainly occurred immediately after feeding on provisioned food (Huffman 1984, 1996; Leca et al., 2008a). Because they are provisioned with food several times a day, Arashiyama troop members have “free time on their hands”, and this opportunity could lead them to further explore various objects (including stones) and incorporate them into feeding activities (Huffman and Quiatt, 1986; Leca et al., 2008a). Thus, food provisioning may be a key factor in the transformation phase of the SH tradition in Japanese macaques. Considering a troop’s ranging conditions and its history in relation to feeding habits may be crucial in predicting the transformation phase of the SH tradition. This does not mean that a particular type of food provisioning is a necessary and sufficient condition for SH to appear and diffuse among group members. However, the way SH is practiced by most group members on a daily basis, and its integration with other activities may differ from one troop to another, depending on the type of food provisioning (Leca et al., 2008a).
Role of SH artefacts in the maintenance of the SH tradition

Recent field experiments conducted at Arashiyama aimed to simulate the context under which SH might be socially maintained in the wild, and infer which form(s) of social influence might support the persistence of the SH culture in Japanese macaques (Leca et al., 2010b). Our main goal was to investigate experimentally how the physical traces typically left in the environment by previous stone handlers (such as piles of stones left on the ground) might help, through a stimulus enhancement process, trigger SH behavior in individuals on a daily basis, and thus contribute to the long-term maintenance of the SH tradition at the group level. Our results supported the “stimulus/local enhancement hypothesis” that individuals preferentially direct their SH behavior toward typical physical traces of SH activity (piles of stones) over randomly scattered stones (Leca et al., 2010b). In other words, encountering SH artefacts enhanced the subsequent use of these particular stones to perform SH activity in that particular part of the environment. Therefore, we provided the first experimental evidence for the role of indirect social influence in the daily performance of SH behavior by most group members, and thus the maintenance of the SH tradition, through the stimulating effect of SH by-products. To some extent, our findings allowed us to reconstruct some elements of the environmental and social contexts underlying the SH culture. By supporting the view that SH is a socially-influenced behavior, this study contributes to validate the concept of SH culture (see also Huffman 1984, 1996; Leca et al. 2007b,c, 2008a,c; Nahallage and Huffman 2007b).

As they become more deeply ingrained into the behavioral landscape of the monkeys, these “play stations” (sic Quiatt and Huffman, 1993) could ensure a baseline level of visual persistence of this form of material culture in Japanese macaques. This is particularly true for free-ranging provisioned troops, characterized by an increased sedentary lifestyle, with most group members staying around feeding grounds, i.e. open areas with stones (cf. Leca et al. 2008a,c). Smaller home ranges are likely to increase individual probability to encounter SH
artefacts, which in turn, may enhance SH activity. Moreover, we showed that piles of stones are frequently reused and constantly modified by the monkeys themselves through the transport of stones between and around SH artefacts. The frequent transports of randomly scattered stones to already gathered stones suggest cumulative environmental modifications. Therefore, through the ever-changing physical traces they leave in the environment, their subsequent stimulating effect on other group members and across generations, and their possible role on the maintenance of the SH tradition, we argue that stone handlers can be considered niche constructors. Our study suggests that a niche construction process could underlie the cultural maintenance of SH behavior in Japanese macaques.

Similar indirect social influences are likely to occur in the acquisition and maintenance of tool-use behaviors in wild chimpanzees and brown capuchins, through the stimulating effect of nut-cracking by-products (nutshells, stones) left by skilled foragers around nut-cracking ateliers (Tomasello et al., 1993; Visalberghi et al., 2009). In general, conspecifics provide ‘tools’ (sensu socio-cultural learning theory: Forman et al., 1993) for the individual acquisition, as well as the diffusion, and maintenance of behaviors at the group level.

From a developmental perspective, constant exposure to various artefacts could increase individual attention to some relevant environmental features, as suggested by Furlong et al. (2008) with respect to young chimpanzees reared in a human socio-cultural environment. For young Japanese macaques growing up in a troop where the SH tradition is well-established and has reached its transformation phase, resulting in a stimulating environment enriched in SH artefacts, a form of “SH enculturation” process may facilitate their early acquisition of the behavior. This argument is all the more relevant as we found a preferential use of piles of stones for SH across all age classes, including infants and yearlings (Leca et al., 2010b).
Towards a stone-related cumulative culture in Japanese macaques?

Our results clearly show an accumulation over time and generations of SH diversity and complexity. However, in the light of the main definition of cumulative culture, which is based on the accumulation of beneficial modifications, this phenomenon will not be referred to as “cumulative SH culture” because we could not demonstrate any direct benefits in the practice of SH (but see Leca et al., 2008b). However, the transformation phase of the SH tradition is all the more likely and flexible since SH is currently acknowledged to be a non-adaptive behavior with no obvious survival value (Huffman 1984, 1996; Leca et al., 2007c), as opposed to stone tool-use traditions for which an efficient behavioral pattern should be maintained unchanged (e.g. Sumita et al., 1985; Boesch, 1991). The long-term cultural transformation of the SH tradition, associated with a generational increase in the diversity and complexity of SH patterns could ultimately result in future stone-tool use, as stone-related behaviors become more deeply ingrained into the behavioral landscape of Arashiyama macaques at the group level (Huffman and Quiatt, 1986; Leca et al., 2008a).

Functional considerations: SH as a behavioral precursor to stone tool-use

Maintenance of a selectively neutral tradition

It has been argued that “whether or not a particular pattern of behavior persists obviously depends on its effects on the survival and reproductive success of its bearers” (Avital and Jablonka, 2000, p. 99). However, our findings show that even traditional behaviors with no obvious function and no apparent adaptive value, such as SH at Arashiyama, can not only be practiced on a daily basis and maintained over several decades within a large proportion of group members, but can also be modified on the basis of a transgenerational accumulation (Huffman, 1996; Leca et al., 2010b; see also “games” as
Several reasons may partly explain the maintenance of the SH tradition at Arashiyama (and presumably at other sites). First, the original motivations underlying SH may be different from what they are today, both at the individual and group levels. Most Arashiyama monkeys observed handling stones in 2008 were born into troops with well-established SH traditions. Furthermore, individuals grew up into a troop with either a strong or a weak connection between SH and provisioning. The conformity-enforcing hypothesis, which proposes that culturally non-conforming individuals may be discriminated against (cf. Lachlan et al., 2004), predicts that immature individuals should integrate the same type of connection between SH and feeding activities as most older group members (Leca et al., 2008a). Individually, the immediate motivation to perform SH could be mere serendipity, as this behavior appears to be self-rewarding (Huffman, 1984). As Avital and Jablonka (2000, p. 85) pointed out, animals may engage in “apparently non-functional activities that seem like the luxurious by-products of extensive behavioral plasticity”. SH behavior may also be maintained because of some internal (physiological and/or psychological) consequences that we cannot measure yet (Huffman and Hirata, 2003).

Second, although SH is not a subsistence activity, it should be noted that no SH pattern is deleterious and the SH tradition is not locally maladaptive but selectively neutral, at least under the favorable environmental conditions of food provisioning (Huffman and Hirata, 2003; Leca et al., 2008a). Third, Huffman (1996) suggested that if SH persists sufficiently in a given troop, direct material benefits may be acquired in the future, provided some modifications of the behavioral patterns or the direct integration of SH with foraging activities (e.g. stone-tool-use) or social interactions (e.g. agonistic display) (Huffman and Quiatt, 1986; Huffman and Hirata, 2003; Leca et al., 2008b). By relaxing selective pressure on foraging,
food provisioning has created favorable environmental conditions under which SH may simply serve the function of maintaining in some troops (such as Arashiyama) a set of behaviors, involving a high level of behavioral complexity and familiarity with stones, that could evolve into tool-use provided particular environmental circumstances.

SH as an exaptive tradition?

Can the daily performance of SH with feeding activity by Arashiyama macaques lead by transformation to stone-tool use in a foraging context? If tool-use is defined as moving a detached object for the purpose of changing the condition and/or position of another object or organism (Beck, 1980), then SH behavior as a whole and most SH patterns cannot be considered stone tool-use. However, there is a series of arguments suggesting that when practiced on a daily basis and by most members of a group, the non-instrumental manipulation of stones could be considered as a behavioral precursor to the possible use of stones as tools (Huffman and Quiatt, 1986; Huffman, 1996; Leca et al., 2008b).

First, the non-instrumental manipulation of objects, such as SH, has long been recognized as a behavioral precursor to tool-use, in terms of individual development and cross-species comparison (Beck, 1980; Huffman and Quiatt, 1986; Hayashi et al., 2005). Second, at several sites such as Arashiyama, the SH tradition is undergoing a phase of transformation, including an increase in the diversity and complexity of the behavioral patterns and the integration of SH with foraging activities (Leca et al., 2008a). Third, the occurrence of SH spots or “play stations” revisited daily by Arashiyama macaques is likely to lead to an increased familiarity with SH artefacts that may result in the use of stones as tools (Huffman and Quiatt, 1986; Leca et al., 2010b). Fourth, although macaques are not frequent tool-users (Beck, 1980; but see Weinberg and Candland, 1981; Sinha, 1997; Leca et al. 2008b, 2010c), long-tailed macaques have recently been reported to display oyster-cracking behavior
with stones (Malaivijitnond et al., 2007). Finally, we recently witnessed a first case of tool-use probably derived from prolonged SH practice: spontaneous stone-throwing as an agonistic display (Leca et al., 2008b).

Therefore, although most SH patterns do not currently meet the criteria used to define tool use, we hypothesized that the long-enduring practice of stone-related combinatorial behaviors by Arashiyama macaques could be considered a behavioral precursor to the use of stones as tools. This scenario is consistent with the “perception-action” perspective on the development of tool-use and foraging competence in monkeys, apes, and humans, postulating that skilled actions are acquired through the routine generation of species-typical exploratory actions, coupled with learning about the outcomes and affordances of each action that generates directly perceptible information (Lockman, 2000; Gunst et al., in press). As an unselected but eventually beneficial trait, the SH tradition would be an exaptation (cf. Gould and Vrba, 1982).

Conclusion and future directions

Arashiyama macaques largely contributed to make SH the best-known non-adaptive traditional behavior in non-human primates. Three decades of continued observation at Arashiyama showed that the monkeys have largely extended and diversified their SH repertoire. Our findings have important implications for understanding cumulative cultural evolution, particularly the reasons for its rarity in non-humans. Research on SH as a tool-use precursor also provides new insights into the emergence of hominid material culture through stone-tool technology. We drew an overall picture of rich cultural diversity in a particular type of object-play behavior in macaques, and suggest that multiple factors should be jointly considered to identify the mechanisms of emergence, diffusion, and maintenance of a behavioral tradition in animals.
Acknowledgements

The authors' work was funded by: a Grant-In-Aid for scientific research (No. 1907421 to M.A. Huffman) sponsored by Ministry of Education, Science, Sports and Culture, Japan, by a Lavoisier postdoctoral Grant, Ministère des Affaires Etrangères, France and a JSPS (Japan Society for the Promotion of Science) postdoctoral fellowship to J.-B. Leca (No. 07421), and by travel funds from the HOPE Project, a core-to-core program sponsored by JSPS to M.A. Huffman and J.-B. Leca. We thank the researchers, students, staff, and friends who provided permission to work, assistance, and valuable specific information about the Arashiyama macaque troop. We are grateful to the following people in Japan: S. Asaba, J. Hashiguchi, T. Kawashima, S. Kobatake, and S. Tamada (Iwatayama Monkey Park, Arashiyama), as well as T. Matsuzawa, A. Mori, H. Takemoto, and K. Watanabe (Kyoto University Primate Research Institute, Japan). For fruitful collaboration and discussion about stone handling and the Arashiyama-E troop, we thank S. Hanamura (Kyoto University Laboratory of Human Evolution Studies, Japan), C.A.D. Nahallage (University of Sri Jayewardenepura, Sri Lanka), D. Quiatt (University of Colorado, USA), M. Shimada (Teikyo University of Science and Technology, Japan), and P.L. Vasey (University of Lethbridge, Canada). For occasional assistance with data collection, we thank C.A.D. Nahallage, K.J. Petrzelkova (Academy of Sciences of the Czech Republic), and N. Tworoski (University of Minnesota, USA). We are indebted to the Enomoto family for providing us with logistic assistance at Arashiyama. We thank C. Caldwell for fruitful comments on an earlier version of this paper.

References

Figure and table legends

Figure 1. Examples of stone handling (SH) patterns by Japanese macaques at Arashiyama. a: cuddle, b: rub stones together, c: gather, d: carry, e: grasp with hands, f: rub in mouth; g: Glance-64-76 (the SH innovator) handling stones on Dec. 7, 1979; Social influence of the mother in SH acquisition by infants, h: Glance-64-76 and her infants in 1987, i: Kusha-59-71-76-82 and her infant in 2008; Handling stones while involved in a social play interaction (j) and in a grooming interaction (k). Photo credit: a, c, e, i, j, and k: J.-B. Leca, b and f: N. Gunst, d, g, and h: M.A. Huffman).

Figure 2. Distribution of stone handlers and non-stone handlers at Arashiyama, according to age and sex classes, and at several point in time.

Figure 3. Accumulation over time and generations of SH patterns diversity and complexity (for categories, names, and definitions of SH patterns, please see Table 1).

Table 1. Comprehensive of the 35 SH patterns performed by Japanese macaques at Arashiyama between 1979 and 2009, and categorized according to general activity patterns (after Leca et al., 2007c).

Table 2. The different periods of survey of SH at Arashiyama. MAH: Michael A. Huffman, DQ: Duane Quiatt, JBL: Jean-Baptiste Leca, NG: Noëlle Gunst
Figure 1.
Figure 2.
Figure 3.
<table>
<thead>
<tr>
<th>Category</th>
<th>Name (code)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigative activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>887 Bite (B)</td>
<td></td>
<td>Bite a stone</td>
</tr>
<tr>
<td>888 Hold (H)</td>
<td></td>
<td>Pick up a stone in one's hand and hold on to it, away from the body</td>
</tr>
<tr>
<td>889 Lick (L)</td>
<td></td>
<td>Lick a stone</td>
</tr>
<tr>
<td>890 Move inside mouth (MIM)</td>
<td></td>
<td>Make a stone move inside one's mouth with tongue or hands</td>
</tr>
<tr>
<td>891 Pick (P)</td>
<td></td>
<td>Pick up a stone</td>
</tr>
<tr>
<td>892 Put in mouth (PIM)</td>
<td></td>
<td>Put a stone in one's mouth and keep it sometime</td>
</tr>
<tr>
<td>893 Sniff (SN)</td>
<td></td>
<td>Sniff a stone</td>
</tr>
<tr>
<td>894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locomotion activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>896 Carry (CA)</td>
<td></td>
<td>Carry a stone cuddled in hand from one place to another</td>
</tr>
<tr>
<td>897 Carry in mouth (CIM)</td>
<td></td>
<td>Carry a stone in mouth while locomoting</td>
</tr>
<tr>
<td>898 Grasp walk (GW)</td>
<td></td>
<td>Walk with one or more stones in the palm of one or both hands</td>
</tr>
<tr>
<td>899 Move and push/pull (MP)</td>
<td></td>
<td>Push/pull a stone with one or both hands while walking forward/backward</td>
</tr>
<tr>
<td>900 Toss walk (TW)</td>
<td></td>
<td>Toss a stone ahead (repeatedly) and pick it up while walking</td>
</tr>
<tr>
<td>901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection or gathering activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>903 Cuddle (CD)</td>
<td></td>
<td>Take hold of, grab or cradle a stone against the chest</td>
</tr>
<tr>
<td>904 Gather (GA)</td>
<td></td>
<td>Gather stones into a pile in front of oneself</td>
</tr>
<tr>
<td>905 Grasp with hands (GH)</td>
<td></td>
<td>Clutch a stone or a pile of stones gathered and placed in front of oneself</td>
</tr>
<tr>
<td>906 Pick up (PU)</td>
<td></td>
<td>Pick up a stone and place it into one's hand</td>
</tr>
<tr>
<td>907 Pick and drop (PUD)</td>
<td></td>
<td>Pick up a stone and drop it repeatedly</td>
</tr>
<tr>
<td>908 Pick up small stones (PUS)</td>
<td></td>
<td>Pick up small stones and hold them between fingertips (like the picking up of wheat grains)</td>
</tr>
<tr>
<td>909</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percussive or rubbing sound producing activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>912 Clack (CL)</td>
<td></td>
<td>Clack stones together (both hands moving in a clapping gesture)</td>
</tr>
<tr>
<td>913 Combine with object (COO)</td>
<td></td>
<td>Combine (rub or strike) a stone with an object different from a stone (food item, piece of wood, metal, etc.)</td>
</tr>
<tr>
<td>914 Flint (FL)</td>
<td></td>
<td>Strike a stone against another held stationary</td>
</tr>
<tr>
<td>915 Grind with teeth (GWT)</td>
<td></td>
<td>Press and rub with a crushing noise one’s teeth against a stone held in hand</td>
</tr>
<tr>
<td>916 Pound on surface (POS)</td>
<td></td>
<td>Pound a stone on a substrate</td>
</tr>
<tr>
<td>917 Rub in mouth (RIM)</td>
<td></td>
<td>Rub a stone against another held in mouth</td>
</tr>
<tr>
<td>918 Rub/roll on surface (ROS)</td>
<td></td>
<td>Rub or roll a stone on a substrate</td>
</tr>
<tr>
<td>919 Rub stones together (RT)</td>
<td></td>
<td>Rub stones together</td>
</tr>
<tr>
<td>920 Scatter (SC)</td>
<td></td>
<td>Scatter stones about, on a substrate, in front of oneself</td>
</tr>
<tr>
<td>921 Shake in hands (SIH)</td>
<td></td>
<td>Take stones in one's open palm hand and shake the stones with the hand</td>
</tr>
<tr>
<td>922</td>
<td></td>
<td>moving back and forth</td>
</tr>
<tr>
<td>923</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other complex manipulative activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>927 Flip (FP)</td>
<td></td>
<td>Turn a stone over with both hands</td>
</tr>
<tr>
<td>928 Put in water (PIW)</td>
<td></td>
<td>Put a stone in water</td>
</tr>
<tr>
<td>929 Roll in hands (RIH)</td>
<td></td>
<td>Roll a stone in one's hands</td>
</tr>
<tr>
<td>930 Rub/put on fur (ROF)</td>
<td></td>
<td>Rub or put a stone on one’s fur while self-grooming</td>
</tr>
<tr>
<td>931 Rub with hands (RWH)</td>
<td></td>
<td>Hold a stone in one hand and rub it with the other (like potato-washing)</td>
</tr>
<tr>
<td>932 Wash (W)</td>
<td></td>
<td>Put a stone in water or pick up a stone from water and rub it with hands</td>
</tr>
<tr>
<td>933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey period</td>
<td>No. observation days</td>
<td>Main observers</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Sept. 1984-Feb. 1985</td>
<td>113</td>
<td>MAH, DQ</td>
</tr>
<tr>
<td>May-Jul. 1991</td>
<td>41</td>
<td>MAH</td>
</tr>
<tr>
<td>May-Aug. 2004</td>
<td>96</td>
<td>JBL</td>
</tr>
<tr>
<td>Jun.-Oct. 2008</td>
<td>66</td>
<td>JBL, NG</td>
</tr>
</tbody>
</table>

Table 2.